
1 Using concept maps in product development

A case study from Exposing the Magic of Design: A Practitioner’s Guide to the Methods and Theory of Synthesis

Hugh Dubberly — Dubberly Design Offi ce — hugh@dubberly.com

Using concept maps
in product development
Preparing to redesign
java.sun.com

Dubberly Design Offi ce consults on development of
software and services. We follow a user-centered
process that often involves mapping. We use concept
maps to represent factors that infl uence the product
development process. We regularly map user goal
structures and user interactions; business models and
resource fl ows; and hardware and software
infrastructure and information fl ows. Increasingly, we
are called on to map data models and content domains.

Many of today’s new software applications and
online services integrate content more deeply than
earlier desktop productivity applications. As Nicholas
Negroponte predicted, content, computing, and
communications have converged.

A concept map is a collection of terms related to
a main idea. Links between terms form a structure—
something like an outline, but with some branches
connected. Labeling a link with a verb creates a noun-
verb-noun chain that can be read as a sentence.

Thus, concept maps present a series of propositions
related to each other and a main idea. Mapping a
content domain—creating a concept map—is an
effective way to understand a domain.

Sharing a concept map with project stakeholders is
an effective way to identify errors in understanding and
reach consensus on content defi nition, structure, and
boundaries. Mapping a content domain is a good way
to prepare for designing or redesigning a content rich
web site, application, or service.

The Benefi ts of Concept Mapping

Deepening Understanding We developed a concept
map of Java as a way to understand Java. The map
helped us prepare to redesign and re-launch Sun’s main
web site for Java developers, java.sun.com. Concept
mapping was one of many tools that we used in the
design process, including auditing the existing site,
reviewing site traffi c logs, and interviewing Java
developers. This case study focuses on the Java concept
map and does not describe the other tools or the larger
site redesign effort.

The main question that we faced was this: How
should we organize java.sun.com? What should the
information architecture be? Answering these questions
was not trivial, since the site contained more than
110,000 pages. It couldn’t be reorganized by simply
reading a few pages and moving them around. What we
needed was a deep understanding of Java—what it is,
how it’s used, how it changes, and why it matters.

The trouble was: We knew little about Java except
that it was a programming language that runs in many
environments. We developed the Java concept map so
that we could learn what we needed to know. The
knowledge we gained making the map enabled us to
propose revisions to the site’s information architecture
with confi dence—and helped us backup our proposal
with reasoning built on a fi rm foundation—reasoning
built on a defi nition of the content domain (i.e., the Java
concept map) already accepted by the client and his
many internal constituents.

2 Using concept maps in product development

Building Trust Like any large corporate project, the
redesign of java.sun.com encountered political issues.
First, it was a visible project in a decentralized company.
That meant the project had a lot of vocal stakeholders.
In addition, java.sun.com was managed by Sun’s
Developer Relations Group, which had recently been
formed by consolidating several previously separate
departments. Not everyone was happy about the new
organization.

As we began to meet internal stakeholders,
we encountered considerable skepticism about the site
redesign project and our ability to execute it.
Developing the concept map became a way to engage
known stakeholders, discover new ones, and build trust.

We interviewed a series of Sun employees involved
with both Java and java.sun.com. We began with a
small group, who in turn suggested others. Eventually
the number of employee interviews exceeded 50. We
also asked the stakeholders to review the concept map
as we developed it.

At a project meeting a few weeks into the process,
one of the key stakeholders reviewed the map and said,

“Not bad. It looks like you’re ready to meet the Java
Distinguished Engineers.” Before that, no one had
mentioned these high priests of Java; they turned out to
be a powerful constituency. The map helped us fi nd
them and gave us entree—both permission to meet and
something to discuss. Those meetings went well; the
Distinguished Engineers were intrigued by the map.
(It’s not often someone turns up with a map of your
baby.) We also entered the discussions with more
credibility than we had at the start of the project, since
we had clearly done a lot of homework to get the map
to where it was. The organization did us a favor by
revealing the Distinguished Engineers only when we
were prepared to meet them.

The most important benefi t of the map, though,
was that we were able to discuss the structure of Java
with the Distinguished Engineers (and other
stakeholders) on its own terms, apart from its
instantiation in the web site. In other words, we were
able to discuss the structure of Java and ensure that we
understood it, rather than discuss a menu system or
page layout, which might have confl ated issues—the
structure of Java, the site information architecture, and
the appearance of the navigation interface.

By separating content from expression—
by mapping—we were able to establish relationships
and build credibility and trust, before proposing
changes to the client’s baby, the Java web site.

Other Uses While the main goal of the concept map
was to help the design team understand Java so that
we could reorganize java.sun.com, it soon became clear
that the map might have wider uses. Our working
version of the map looked like a sketch, which refl ected
the constant changes we were making. (It was messy.)
The sketch form invites comments—where a more
polished form may inhibit comments.

When we reached consensus on the content,
we formalized the map’s appearance. Eventually,
the map went through two printings and was
distributed to more than 25,000 Java developers.
We also created an interactive map, which is still
available online at http://www.dubberly.com/concept-
maps/java-technology.html.

The Process of Concept Mapping

At the beginning of the java.sun.com redesign project,
we asked to see Sun’s models of Java. We were unable
to locate detailed models, but we did fi nd slides from
marketing presentations—”marketectures”, versions of
technical architectures simplifi ed by marketing people.
One of these marketectures depicted Java as the
Parthenon; three steps supported a few columns
capped by an architrave and a pediment. This model
included less than a dozen elements. It became our
starting point.

Set Goals Setting goals is the key to managing. Rick
Robinson points out that all research should begin with
a clear goal, what he calls a “hunt statement”. Likewise,
mapping should begin with a clear goal. A simple way
to clarify a map’s goal is to write a “working title.”
We set six goals for the Java concept map:

 1 Develop an understanding of Java shared among the
java.sun.com redesign project’s stakeholders.

 2 Inform both the logical organization of java.sun.com
and its integration with other sites.

 3 Develop a framework by which changes to Java
can be understood.

 4 Open a dialog with senior Java stakeholders.
 5 Provide an overview of Java to people familiar with

computing but unfamiliar with Java.
 6 Develop a map that an average Java programmer

would consider accurate.

3 Using concept maps in product development

Identify Terms The fi rst step in developing a concept
map is to identify terms that could be included. In this
phase, the goal is to quickly explore the domain. Write
down whatever you fi nd or think of. Editing comes later.

Our fi rst list of terms came from the team’s own
experience, from glossaries of Java terms, and from the
indices of books on Java.

We kept our list of terms in a spreadsheet. We
printed each term on a label and affi xed the label to a
colored “sticky”, so that it could be moved and grouped
later. We then placed the stickies on a 4-by-8-foot
foam-core board, so that we could move the whole
group around the offi ce easily.

Our initial list included roughly 400 terms.

Prioritize Terms We prioritized the terms,
creating more manageable clusters:

 – 11 fi rst priority
 – 45 second
 – 157 third
 – 136 fourth
 – 51 fi fth

Triage is a similar strategy. Which terms are critical?
Which terms can we deal with later? And which terms
are not relevant?

Defi ne Terms We defi ned each fi rst-, second-, and
third-level term, adding defi nitions to the spreadsheet.
The list of defi nitions served as a foundation for later
work. In discussions with reviewers, the defi nitions
allowed the team to focus on individual words, without
referring to the map. The list of defi nitions was
particularly useful in conversations with reviewers who
didn’t understand that map, especially when they
reviewed early versions.

205 defi nitions were collected from 8 sources.

Organize Terms We organized the fi rst-, second-,
and third-priority lists into a single outline.
We experimented with several variations. For the
most part, category titles in the outline were fi rst-
priority terms.

Figure 1

Early grouping of Post-it notes.

4 Using concept maps in product development

Add Terms We added second- and third-priority terms.
New terms suggested changes to the armature.

Review and Revise Once we had an armature fl eshed
out with secondary terms, we reviewed the map with
the client and a small group of Java experts. They
suggested additional reviewers. From this early stage,
reviews were ongoing. We continued to interview
stakeholders while we developed the concept map,
asking them to review and comment on the current
version.

Reviews took place in one-on-one interviews, on the
phone, or via email. We sent drafts of the map to groups
within Sun. We also posted large, printed copies in
high-traffi c areas at Sun; reviewers wrote directly on
the map or attached yellow stickies.

Marked-up maps were returned to us.
Several people reviewed the map multiple times.

 36 people reviewed the map in one-on-one interviews.

 10 people provided feedback via posted maps.

Test Armatures When the number of terms in a
concept map exceeds 9 or 10, introducing levels or
hierarchy may make reading easier. Large concepts
maps (more than 50 terms) are almost impenetrable
without attention to both semantic and visual hierarchy.

We like to organize large concepts maps around an
“armature”, a primary sentence or two. A good place to
start is with a horizontal sentence placing the main
concept in a context; then add a vertical sentence
defi ning the concept. Other terms link off the armature.

An armature should include the terms most
fundamental to the concept being mapped. These
fundamental terms and relationships serve as the
backbone for the rest of the map, providing structure
and hierarchy. The armature is often a starting point
for readers.

We experimented with several armatures. The client
and the design team chose the armature with the most
meaningful relationships and the one that provided
space (both physically and logically) for the rest of
the terms.

Figure 2

Armature study.

Developers Java Peopleuse to make Software for

Tool

is a

Programming
Language

Class Library
Security
Model

comprising

Server
Applications

Development
Tools

Desktop
Applications

such as

Embedded
Applications

JVM

5 Using concept maps in product development

Figure 3

Armature with next level of elements added.

Figure 4

Early composite.

6 Using concept maps in product development

Refi ne the Typography Jim Faris and Harry Saddler
proposed several options for the form of the map.
The team adopted Sun Sans as the primary typeface,
conforming to Sun’s corporate identity standards.

Early sketches produced some new typographic
devices that were eventually applied to the map. One
device was a sort of footnote or hypertext link, which
allowed us to indicate more relationships without
drawing more long lines across the map.

Refi ning appearance required 7 complete revisions.

Subdivide Large Maps As we added terms, the map
became unwieldy and diffi cult to consider as a whole.
So: We divided the map into logical sections.

Subdividing the map increased effi ciency.
We distributed sections to members of the team who
refi ned their sections simultaneously. They added terms
and modifi ed relationships, and, in some cases, created
secondary armatures. We reassembled the sections
around a refi ned armature, paying special attention to
relationships between the sections.

At its largest, the map measured 3 × 8 feet.

Figure 5

Final composite; content basis for fi nal design.

that make

runs on and connects is used by

useful for some of whom arelearn and use to create and run

can be used to write

edited in the

is used
to createcontribute to the

generation of

are read
by the

are runtime instances of

run on a

defines

is the foundation
for the completed

are stored in are stored in

testing may find a

when debugged,
contributes to

may be thought
of as running

compiles
source code

into

translates
byte code

into trapped by a

helps identify problems with

allows adjustment of

constitute

often begin the
development process with

outline lay out

define

are constrained by

are distinguished by

may be categorized as

have

may contain multiple

may contain multiple

implement

implement

implement

implement

refer to an

define an

defines the behavior of

are examples of

create
instances of

can be
used through

are invoked
by or on

have

may implement

running in RAM are

are
examples of

define
a location
 to store

consist of

manipulate

can be

are processed by to create serves as the

inherit methods and properties from

may also be

may be

may override existing
may define new

may rely on parent

have

may define required

field or class types can be

field types
can be

works with

m
ake(s)

m
ake versions of a

may be

developsdraft

are represented on

is added to
the definition of

is represented on

overseeswork is done by

consist of members of

champion

are lead by

often discuss Java in

chairs the

administers the

is instantiated inif accepted,
becomes

is submitted to

may become may become

hosts

provides

may request
major revisions via

may revise
certify Java

applications using

comments on

exists within

participate
in the

elect theform

serve on

may request
revisions from

comment on

may submit or
comment on

supports
the

development
of

support the
development of

such as

engage
in

supports
such as

enable

such assuch as

is used to build
and run

are built using are built usingare built using are built using are built using
run in run in

include a

includes a contains a
subset of a

depend
on

depends
on

depends
on

such
as

such
as

such
as

such
as

is based on subsets of

is used to build
and run

is used to build
and run

is used to build
and run

are built with are built with

may be
built with

may be
built with

may be
are built with

runs onruns on

are built withare built with

defines

is contained in

are
contained

in

depends upon

is used to
build and run

have both

provide an interface for

can call other
is housed in

describe

are

can call can call

always directly
builds

always have

may directly
build

never directly
builds

embed programing code in a

may be
interpreted by

is one
type of

are enabled by

provides a

run inside
an

run inside a

include

include

may utilize
the

can be

run inside
of

are built using

can be created by

is created by a

are configured by

read
configurations

from

instantiate one or more

run on

run on

run onrun on run on

run onrun on

run on

run on

such as

is used to
build and run

are built using

for example

are

arefor example

may be enabled by a

are built with

runs
inside

may be enabled by the

may run
inside of

run inside of

areare
run inside acan be

are contained inare contained in is contained in

are
contained

in

provide building
 blocks for

are
composed

of

run on

run on

are
facilitated

by

are
instantiated

in

are
facilitated

by

are
instantiated

in

are facilitated by

are instantiated in

is facilitated by

is instantiated in

is facilitated by

is instantiated in

is facilitated by

is instantiated inare instantiated inare instantiated in

is facilitated by

is instantiated in

is facilitated by

are instantiated in

can be built
and run using

can be built
and run using

can be built
and run using

can be built
and run using

are instantiated in is instantiated in

is facilitated by

are instantiated in

run on

are
composed

of

are
composed

of

enforces aimplements

is defined by the

enables usually employs can employimplements

enablecontrols access to

include a

is a
name

for

is
implemented
as a set of

are used to create
include

include
are used to run

is a

owns
the Java

such as

may
consist of

are used to
write, test,
and debug

such as

are used in
may include

are

include

may include

often use

contain multiple

are ratified through

defines

that is an

is organized by

provide

such as

such as

such as such assuch assuch as

specifies and
documents

specifies and
documents

specifies and
documents

provides

is used to writeis defined by
in Java, is used to write

may download
and install

often own

is distinguished by

run on

run on

run on

run on

runs on

run on

runs on

run on

run on

are
contained

in

provide building
 blocks for

are
composed

of

run on

run on

run on

are
composed

of

are
composed

of

include

within the context of the
Java Community Process,

may function as

Java(TM) devices peopleprogramsDevelopers

virtual
machine

debugger

development
environments

tools

compilertext editor
visual

programming
tools

source
code

classes

source code
framework

class
structures

objects

serialization

text files binary files

byte
code

trademark

machine
instructions

fragment or
application

bug

user interface
frameworks

class libraries

ratified
class libraries

packages

classes

constructors inner classes

superclass
(parent class)

abstract classes

Application
Programming
Interface (API)

subclass
(child class)

fieldsmethods

types

scope

commentsdeclarationsstatements data

primitives
object

references

Javadoc(TM)
comments

the
Javadoc

tool

browsable
documentation

Application
Programming
Interface (API)

Spec

interfaces

methods and
properties

Java
Community

Process (JCP)

Program
Management

Office

Java developer
communities

Executive
Committee

Sun

programming
language

companies

Maintenance
Lead

Specification
Leads

(Spec Leads)

Java forums

new Java
Specification

Community
Draft

Public
Draft

Java
Specification

Request (JSR)

Reference
Implementation &

Compatibility
Kit (TCK)

Expert
Groups

home
services

network-aware
automobiles

documentation

J2SE
documentation

J2ME
documentation

other
documentation

tutorials
J2ME

Platform
Specification

Mobile
Information

Device Profile
(MIDP) API
Documents

Connected
Device

Configuration
(CDC) API
Documents

Connected
Limited Device
Configuration
(CLDC) API
Documents

Mobile
Information

Device Profile
(MIDP)

Specification

Java
Language

Specification (TM)
(JLS)

Connected
Device

Configuration
(CDC)

Specification

Connected
Limited Device
Configuration

(CLDC)
Specification

Foundation
Profile

Specification

PersonalJava
Specification

Personal
Basis
Profile

Specification

Personal
Profile

Specification

J2EE
Platform

Specification

J2EE
Connector

Specification

Java Series

J2SE
tutorials

J2SE API
Specification

Java Series

J2ME
tutorials

J2ME API
Specification

Wireless
BluePrints

Java Series

J2EE
tutorials

J2EE API
Specification

J2EE
BluePrints

J2SE Platform
Specification

J2EE
documentation

user-controlled
camera views

localized video
on demand

ATMs
point-of-sale

services

J2ME(TM)

MIDletsJ2ME
applications

Linux
Symbian OS
proprietary

Palm OS
Windows CE

RTOS
proprietary

Windows
Solaris

proprietary

Java Card (TM)

applications
for use with
Smart Cards

Java Card
applets

J2ME (TM)
Optional
packages

optional
packages

J2ME
applets

profiles

Mobile
Information

Device Profile
(MIDP)

Personal
Profile
(PP)

configurations

Java Card
API

Java
virtual machine

Java Card
virtual machine

point-of-sale
(POS)

systems

pagers cell phones personaldDigital
assistants

(PDAs)

Java Card
subscriber

identify module
(SIM) phones

multi-application
smart cards

Connected Device
Configuration

(CDC)

Connected Limited
Device

Configuration
(CLDC)

specialized
embedded

applications

cell phone
applications

PDA applications

proprietary

Java Embedded Server(TM) (JES)

embedded
applications

Java Embedded
Server(TM) (JES)

framework

Java
virtual machine

Java
virtual machine

PersonalJava(TM)

network-aware
appliances

automobiles Telematic
tetworks

real-time
operating system

(RTOS)

Java TV(TM)

interactive
television

applications

Java TV
Xlets

Java TV
APIs

televisions

Java Card
Development

Kit

J2ME Wireless
Toolkit

Java Regular
Expressions

Java Database
Connectivity
(JDBC)(TM)

Beans

JavaBeans(TM)

JavaHelp(TM) Java XML
Pack

Java 3D(TM)

Java
virtual machine

J2EE(TM)

web
services

Extensible
Markup Language

(XML)

Universal
Description,

Discovery, and
Integration

(UDDI)

Simple Object
Access Protocol

(SOAP)

web-Based
applications

servers

Solaris
Linux

Windows
HP-UX

AIX
FreeBSD

Client/Server
applications

enterprise
applications

servlets
JavaServer
Pages(TM)

(JSPs)

Enterprise
JavaBeans
(EJBs)(TM)

J2EE platform
packages

J2EE-specific
packages

containers

are run in

connector
architecture

web container
EJB

container

J2EE
server web server

server
components

client
components

business
logic

user
interfaces web browser

markup language

deployment
descriptor

J2SE(TM)

platform
packages

J2SE
applets

J2SE
applications

workstations
personal

computers

Windows
Mac OS

Unix
Linux
Irix

Solaris
SunOS

Java-enabled
browser or

viewer

operating system-
based Java

virtual machine

Java
Plug-In

applications
embedded in a

web page

desktop
applications

playing buying
 and selling

creatingworkingcommunicating collaboratinggetting
information

games the world-wide
web

marketplace
services

image
creation
software

productivity
software

e-mail
services

instant
messaging

services

collaboration
software

communication
software

discussion
forums

news
services

stand-alone
applications

servers web-based
solutions

clients

J2SE
optional
packages

J2SE
Software

Development
Kit

J2EE Software
Development

Kit

Java
Web Services

Developer Pack

UP UX
AIX

Alpha
RS6000
FreeBSD

NeXT
HP-UX

Compaq Tru64
beOS
VMS

Software
Development
Kits (SDKs)

platforms

runnable
components

components

Java Runtime
Environments

(JREs)

operating
systems

specific
devices

(hardware)

activities

services

solutions

activities

services

solutions

applications

packages
or libraries

security model

portability

architecturally
independent
applications

Just-In-Time
compilation

Java virtual
machine

(JVM)

Java virtual
machine

specification

dynamic
compilation

garbage
collection

explicit
error handling

critical
resources

syntax and
keywords

object
oriented

programming
language

benefits and
advantages

ability to
write higher-quality

code

reduced
development

time

more
maintainable

code

principles

features /
benefits

Software
Development
Kits (SDKs)

platforms

runnable
components

components

Java Runtime
Environments

(JREs)

operating
systems

specific
devices

(hardware)

applications

packages
or libraries

Permit child classes to
inherit a defined method or
to create groups of related
classes for polymorphic
behavior.

Java is especially useful
in devices that are
connected by a network.

Detailed instructions
that cause a running
object to take action or
manipulate data.

Reside inside
another class, allowing
for better organization.
Should not be confused
with subclasses.

In running programs,
declarations define
a variable's existence
and determine scope.

Notes that developers
include to explain source
code to themselves and
other developers.

Comments specifically formatted
to be processed by the Javadoc tool.

In running programs,
statements prescribe
actions or a sequence
of actions.

Generally enable
basic math or
comparison
operations.

Sometimes
referred to as
properties.

Source code files that describe
a unit of programming. A class
relates a set of data (fields) and
functions (methods) that
use the data.

Runtime instances
of classes.

In runtime, refers to the
process of turning an object
into a data stream for purposes
of transmission or storage.

Particular to Java, a source code
file that defines a set of functions
(methods) that are required by a
class. Interfaces name methods
and set an expectation for each
methods' behavior, but do not
implement the methods. Interfaces
allow a piece of code to be written
in such a way that the code can
work with any type of class that
supports the interface.

The written or understood specification of how a piece of
software interacts with the outside world. Specifies what
input the application or application component accepts,
how the software will behave, and what output it will provide.
All computer software relies on a variety of APIs to
achieve tasks such as writing a file or displaying text.
APIs often depend on other APIs.

Is human
readable.

Basic source code that
describes the graphical user interface.
Does not include
implementation details.

The combination of the class
structures and the user
interface framework into
a skeleton of the application's
overall source code. Does not
include implementation details.

Are human-legible.
Text files usually have the
suffixes .java or .jav

Are legible only to
computers. Binary files
usually have the suffixes
.jar, .jcm, .class, .ear,
or .war

In this map, distinguishing
features or benefits of Java are
highlighted with red circles.

Basic source code
that provides a framework
for the classes, describes
the class hierarchy, and
the names of the class
methods and properties.
Does not include
implementation details
(method definitions).

Is platform
independent. It
almost never can be
read by the processor
directly.

A software utility that
turns human-readable
text files into machine-
friendly byte code.

Are processor
dependent. They can be read
by the processor directly.

The software development process is iterative,
with several rounds of designing, writing, compiling,
running, and testing before software is deployed.

Limits
access to methods
and properties.
Levels include:
- public: can be called or
manipulated freely
- protected: can be called
or manipulated by a class
in the same package
- private: can be called or
manipulated only by the same class.

Proposal to develop
a new specifiaction or
significant revision to an
existing specification.

Written specification for some aspect of
Java technology, including language,
virtual machines, platform editions, profiles,
and APIs.

A TCK is a suite of tests, tools,
and documentation that provide
a standard way of testing an
implementation for compliance
with a Java specification.

Including: IBM, Motorola, Nokia,
Oracle, Novell, Netscape
Hewlett-Packard, Apple, and BEA

Some JVMs are optimized
for residential gateway servers.

Connect computers with
telecommunications systems.

Includes
specific
packages
that are
subsets of
the J2SE
equivalent:
java.lang
java.util
java.net
java.io
java.text
java.security

Includes
specific
packages
that are
subsets of
the J2SE
equivalent:
java.io
java.lang
java.util
javax.microedition.io

Includes specific packages:
java.lang
javacard.framework
javacard.security
javacardx.crypto

A set of packages required
for a particular vertical
market segment or set of
related devices. Other profiles
include Foundation, Game,
Personal Basis Profile, and PDA.

There are several
implementations of
MIDP, including MIDP
for Palm 1.0.3, MIDP
1.04 for Monty, and
MIDP 2.0.

A set of packages
that define basic
services for a range
of devices.

Java 2 Micro Edition(TM) is an edition of Java
intended to run on devices with limited computing
power, such as cell phones or PDAs. J2ME has
reduced processor and memory requirements. It is
based on subsets of J2SE with additional
components added for market segments, such as
hand-held devices.

Some JVMs are optimized
for set-top boxes.

Some JVMs are optimized for
cell phones, PDAs, and other
similarly resourced devices.

Specifies packages:
http
log
device access
timers
framework

Depend on the Java
Media Framework (JMF),
which is optional to J2SE
but required for Java TV.

Java 2 Enterprise Edition(TM) is an edition of Java
used to build secure, scalable, distributable server-based
applications for large enterprises.

Can be:
HTML
WML
XHTML

Provides a way
for applications
to communicate.

Provides a structured
and extensible
mechanism for
organizing and
presenting data. Many
Java packages and
classes utilize XML to
store and exchange data.

Provides a way
for businesses to
discover each other.

Examples include:
¡¡x.activation
javax.ejb
javax.servlet
javax.transaction
javax.xml

Sometimes referred
to as required or core
packages.

Manage transactions,
life-cycles, and data
persistence.

By runnable components,
we mean components
that can run on their own.

Selected Java products have been localized
into languages other than english. This
localization is one of the key factors for adoption
of Java Technology outside the United States.

Components cannot
function on their own,
but are used by other
components or
runnable components.

Provides a mechanism
for connecting to legacy
information systems.

Some JVMs are
optimized for servers.

A JRE is the software environment in which programs compiled for the
Java virtual machine can run. The runtime system comprises everything
necessary to run programs written in the Java programming language,
including the Java virtual machine, which may be a Java interpreter, and
the platform packages.

Some JVMs are
optimized for various
types of laptops, workstations,
and desktops.

Some browsers may be Java-enabled
because they include the Java Plug-In.
Some users may need to download the
Java Plug-In for their browsers. Installing
the Java Plug-In will also install the J2SE
Runtime Environment.

A type of application server.

Implement a main method.
A class that defines a z application
must declare a main method, which the
Java virtual machine uses as the starting
point for the application. The main method
gets executed when the application starts.

Extend the applet class,
which provides developers
with a basic framework for
rapid development of a
limited application. This
includes a basic user interface
framework and event model.

Discrete units of
software functionality
that conform to the
JavaBean API and
are designed to be
re-usable components.
The JavaBean API
makes it particularly
easy for Beans to be
utilized by visual
programming tools. (In an
architecture analogy, these
would be prebuilt walls,
windows, or doors.)

Also referred to as required or core packages,
these are the heart of the Java programming language.
The packages include myriad classes that define
user interface components, a programming event model,
text and math processing tools, code-level security,
objects for memory storage of complex data, and
methods for invoking remote applications, to name just a few.

Java 2 Standard Edition(TM) is an edition of Java intended to run
on desktops, laptops, and workstations. J2SE also includes
the core language packages and classes used by J2EE and J2ME.

An API that defines a
standard mechanism
by which Java programs
can interact with structured
data. Developers can write
applications without being
tied to a particular data
age mechanism.

A powerful set of
text matching and
manipulation routines
supported by many
programming
languages. Java
implements Perl-
compatible
regular expressions.

A set of Java APIs
and architecture for
use with XML.

A set of classes
used to write
three-dimensional
graphics applets
or applications.

The J2SE SDK includes the necessary
source code, class libraries, development
tools, and run time environment required to
build Java applications and applets.

Includes the necessary
tools, emulators, documentation,
and examples to develop and
simulate Java applications
targeted at cell phones, pagers,
PDAs, and other small devices.

Includes the necessary tools,
emulators, and runtime environment
to develop and test applets for the
Java Card platform.

On handheld and embedded devices, the initial
implementation of Java addressees the software
needs of networked applications running on
personal consumer devices such as set-top boxes
and smart phones.

A set of classes
used to write
protocol-
independent
Java-based mail
applications.

Includes the binary
version of the J2EE Reference
Implementation, plus development
tools and documentation needed
to build a J2EE application.

Provides a framework for developing and
hosting J2EE applications that run inside
web containers. The pack includes the
Java APIs for XML included in the Java
XML Pack, the JavaServer Pages
Standard Tag Library (JSTL), the Art Build
Tool, the Java WSDP Registry Server,
and the Tomcat Java Servlet and JavaServer
Pages container.

Define independent
pieces of business logic
or application behavior
that are called by either
servlets, JSPs, applets,
applications, or other
EJBs.

Respond to
an URL request. Servlets
commonly generate HTML,
XML, or dynamic
images.

Define a page element,
which can be HTML, XML, or
another markup language.
JSPs execute as servlets.

Significantly improves
virtual machine performance
by translating groups of
instructions from byte code
to machine code rather than
one instruction at a time. JIT
compilation is enacted by the
Java HotSpot(TM) virtual machine.

Java virtual machines are architecturally dependent.
There are JVMs are available for nearly every
contemporary operating system.

Goes beyond Just-in-Time
compilation by examining the
code as it executes and focusing
optimization efforts on the most
critical pieces of code as it executes.

The virtual machine may
encounter a problem, or
exception, while a program
is running. The Java
language requires that
pieces of code which are
likely to encounter a
particular error offer a
mechanism for handling
the exception at runtime.
When an error is
encountered, the virtual
machine executes the
code designed to respond
to the error.

Watching for data in memory
that is no longer needed
and freeing the memory for reuse.
Other programming languages
require programmers to explicitly free
memory when a piece of data is no
longer needed, which can increase
the development effort.

Includes
- memory
- hard drive

One application
can run in multiple
environments
without being
rewritten or recompiled.

Java developers often
use specific development
environments called
Integrated Development
Environments, or IDEs.

Java has roots
in C, Objective C,
SmallTalk, and LISP.

As opposed
to a purely
procedural
programming
language.

Such as the object model,
inheritance, modularity, abstraction,
hierarchy, implementation hiding,
information hiding, encapsulation,
and polymorphism.

Include Web Services,
Getting Started, Java XML,
Internationalization, Sound,
and Java 2D.

Define a set
of methods to
address
specific
functionality
required for
certain
specialized
applications.

writedesign compile testrun
software development process Java(TM) object model

Java
Community
Process(SM)

Java(TM) 2 platform... ...for Enterprises ...for desktops ...for consumer and embedded applications

What Is Java™ Technology?
Sun Microsystems, Inc.

draft, version 0.16
17 February 2002

Please review for structure, accuracy of content, and
completeness. A copy edit and trademark review will
follow later. More visual distinction to express hierarchy
of ideas (graphic design or typographic design) is also
still to come.

Revisions from version 0.12 are indicated in violet, except for the People area.

prepared for
Sun, Developer Web Services

by
Dubberly Design Office / Devine / Faris / Saddler

With major contributions from:
Calvin Austin, Josh Bloch, Lisa Friendly, Karen Galatis, Jim Inscore, Doug Kramer,
Paul Pangaro, Robert Patten, Monica Pawlan, Carla Schroer, Leigh Shevchik,
Alan Sommerer, Ken Tallman and Jim Urquhart.

Thanks also to:
Andrey Dikanskiy, Debra Dooley, Jovi Garcia, Dale G., Joann Gray, Stuart Marks,
Shawn Moore, Chuck Mosher, Brad Wetmore, and Hinkmond Wong.

Sun Confidential

For comments, contact:
Audrey Crane
audrey@dubberly.com

Introduction
This diagram is a model of Java™ technology. The
diagram defines Java technology by mapping it to related
concepts and examples. It seeks to provide an overview
of the major facets of Java, to show how Java fits into the
world of developers, and to explain how Java ties into the
world of computers and networks.

The diagram is meant for an audience familiar with
computing and software development but perhaps not
completely familiar with Java. It seeks to provide an
introduction for non-engineers who might be engaged in
development activities and to provide a comprehensive
overview for engineers who may be new to Java or
familiar only with parts of Java but not entirely clear on
how they all relate.

The diagram is not intended for a highly technical
audience, nor is it for someone completely new to the
world of software development.

Concept Maps
The diagram takes the form of a concept map. Concept
maps are webs of linked terms that help visualize mental
models and clarify thoughts. In concept maps, verbs
connect nouns to form propositions. Examples and
details also accompany the terms. More important terms
receive typographic emphasis; less important ones and
examples are grayed back and pushed to the periphery.

Figure 6

Early visual style sketch.

7 Using concept maps in product development

Check Again Throughout the project, we worked with
a copy editor. She checked each comprehensive
revision for spelling, grammar, and sense. Sun’s legal
and trademark department also reviewed the map
several times, as did an attorney working for our client’s
department and two subject-matter experts.

At the end, Sun’s marketing department asked for a
few visual changes—and we faced a nerve-racking few
days when a senior manager questioned whether the
map contained too much proprietary information.
Luckily we were able to show that the information was
all already available on java.sun.com.

The map went through a total of 53 numbered versions/releases.

Print and Distribute The map was printed at Color
Graphics in San Francisco. Sun initially distributed the
map at the JavaOne conference in Japan.

Figure 7

Final poster.

Java
devices

that
mak

e
 use

ful fo
rpeoplelea

rn
 and use

Developers
programs

 to create and run

and the

internet

What is Java Technology?
This diagram is a model of Java™ technology. The diagram
explains Java technology by placing it in the context of related
concepts and examples, and by defining its major components
and the connections between them. It shows how developers
use Java technology to create programs that benefit people
everywhere, and explains how computers and networks relate
to Java technology.

The diagram is intended to help developers who are familiar
with one part of the Java platform understand other parts. It
relates unfamiliar technologies to ones with which developers
may already be familiar. The diagram also provides an overview
for developers who are new to Java technology and an
introduction for non-programmers who want to improve their
ability to converse with developers. For more information,
visit the web site at http://java.sun.com.

Concept Maps
The diagram takes the form of a concept map – a web of linked
terms showing both overall structure and details. By showing
everything – the forest and the trees – in a single view, concept
maps help people visualize mental models and clarify thoughts.

In concept maps, verbs connect nouns to form propositions.
Examples and details accompany the terms. More important
terms receive visual emphasis; less important terms and
examples are in gray. Purple terms and purple lines indicate a
process. Terms followed by a number link to terms preceded
by the same number.

Trademarks
© 2002 Sun Microsystems, Inc. All rights reserved.
Sun, Sun Microsystems, the Sun logo, Java, the Java
coffee cup logo, J2EE, J2SE, J2ME, Enterprise JavaBeans,
EJB, JavaBeans, Java Card, Java Community Process,
JCP, Javadoc, Java Embedded Server, JavaHelp, JavaServer
Pages, JSP, Java TV, Java 3D, Jini, JVM, PersonalJava,
Solaris, and SunOS are registered trademarks of Sun
Microsystems, Inc.

Any errors or omissions are the responsibility of the
authors. Comments are welcome; contact Audrey Crane
at audrey@dubberly.com.

September 6, 2002

Acknowledgements
Prepared for the Sun Developer Web Services Group
by Dubberly Design Office/Devine/Faris/Saddler.

Significant contributions from the following people
made this map possible: Josh Bloch, Lisa Friendly,
Doug Kramer, Paul Pangaro, Robert Patten, Monica
Pawlan, Carla Schroer, Leigh Shevchik, Alan
Sommerer, Ken Tallman, and James Urquhart.

Thanks also to Cindy Bloch, Adam Cohn, Andrey
Dikanskiy, Larry Freeman, Dale Green, Joann Gray,
Cori Kaylor, Onno Kluyt, Stuart Marks, Shawn Moore,
Chuck Mosher, Shaler Ney, Eduardo Pelegri-Llopart,
Lori Uzzo, Brad Wetmore, and Hinkmond Wong.

Java object model

Java virtual machine
(JVM

TM

)

Programming language

Development process

Java Community ProcessSM

JavaTM2 Platform:
end-to-end solutions Documentationfor enterprise servers and applications for desktop servers and applications for consumer and embedded servers and applications

is a name for a ... programming language
is also a name for ... SDKs and JREs
defines a set of ... APIs 13
is implemented as a set of ... platforms 27
can be used to write ... programs 24

such as ... applications 28
enable ... services 26
run on and connect ... devices 25

define
m

ay
contain m

ultiple

m
ay contain

m
ultiple

implement

im
plem

ent

or

refer to ... objects 15

are
constrained by

are
constrained by

are invoked by

may define required
or on ... objects 15

define a location to store

can be

are processed by the to create

has

ha
ve

may be an

m
ay override existing

m
ay define new

m
ay rely on parent's

contain m
ultiple

are ratified by... the JCP 2

ser
ve

s a
s t

he defines the
behavior of ... APIs 13

define

can be
used
through

inherits methods and properties from a
may also be a

field types can be
field or class types can be... classes 12

may implement
are runtime instances of ... classes 12
have
are created by

implement
running in RAM are
may be categorized as
are constrained by
are distinguished by

m
anipulate

enforces a

is defined by the

enables

improves can be improved by

can be im
proved by

implements

implements

controls access to

enable

defines

that is an
is organized by

provide

such as

is defined by the ... Java Language Specification 43
is used to write ... programs 24
is used to write ... class libraries 10

is based on the

outline

lay out
contribute to
the generation of

contribute to
the generation of

testing
m

ay find a

m
ay be thought of

as running ... objects 15

such as

allow
s adjustm

ent of ... objects 15

may include

are used to write, test, and debug

is trapped by a

are exam
ples

of ... classes 12

m
ay consist of

often discuss Java in

draft

are led by

consist of members of
and do the work of the

overseen by the

are represented on the

is subm
itted to

administers the
chairs the
exists within

has a
w

hich is

comments on

may request major revisions via
may revise

develops

works with
supports the development of ... Java 0
provides ... documentation 42
owns the ... Java trademark 1
make(s) ... SDKs 29
makes versions of a ... JVM 18
provides
is represented on

cham
pion

is added to the
definition of ... Java 0

become members of the JCP by signing
within the context of the Java Community Process,
may function as ... developers 23
support the development of ... Java 0
make ... SDKs 29
make versions of a ... JVM 18
certify Java applications using

provide building blocks for
run on

are com
posed of

are com
posed of

are contained in
include

run on
run on

are com
posed of

re
ad

 c
on

fig
ur

at
io

ns
 fr

om
 a

are configured by is described by have interfaces provided by
can call other

always have
can be ... J2SE applets 36
can be ... J2SE applications 38
can be ... J2ME applets 40
can be ... MIDlets 41

have

such as and

is used to build and run

can be a

run inside a

include

can be created by
runs on

runs on

run on

are ... class libraries 10

may include ... tools 17
are used in ... development environments 16
include ... class libraries 10
are used to create ... programs 24

include a
include ... packages 11
are used to run ... programs 24

always directly build
embed programming code in a

depends upon

such as

are

m
ay utilize the

are run in

are configured by a

is housed in

are built using

run inside an

run inside a

are built using

are built using

run inside a

is created by a

is contained in

never directly build may directly build

include ... platform packages 37

contains

runs on

may be enabled by
are enabled by

provides a

is
 o

ne
 ty

pe
 o

f

is used to
build and run

is used to
build and run

are

are

are built using

are built using

m
ay run inside a

run inside an

for exam
ple

are contained in the

are built w
ith

may be enabled by anmay be enabled by a

are built using

are built using

run in a

are built using

runs on
run on

contains a
subset of a

include a

includes a
depends on

depends on

such asare

are built w
ith

is used to build and run
are built using a

are
built w

ith

m
ay be

built w
ith

m
ay be

built w
ith

m
ay be

are
built w

ith

is contained in the

defines a
runs on

run on

is used to build and run
are built w

ith
are built using

run on
run on

runs on
runs on a

is used to
build and run

are built w
ith the

runs on a
runs on

run on

is instantiated by

runs on

runs on

run on

run on

is based on subsets of

for exam
ple

such as

such as such as

run in a

m
ay

 b
e

in
te

rp
re

te
d

by
 a

such as

such as

such as

such as

specifies and
docum

ents ... J2EE 32

specifies and
docum

ents ... J2SE 35

specifies and
docum

ents ... J2M
E 39

such as

are contained in

depend on

are contained in

runs on

are

is used to create
are read by a

run on a

defines
are
stored in

com
piles source code into

is stored in

translates
byte code into

constitute a
w

hen debugged,
contributes to

is edited in the

begins w
ith

are used to build the

begins with

if accepted becomes a may become a may become a

is added to the
definition of ... Java 0
may be implemented in

is instantiated in a

12

... interfaces 14

connects ... devices 25
supports
supports ... web services 33

engage in

are facilitated by
are instantiated in

features and benefits

ha
s

a
w

hi
ch

 is

is d
ist

inguish
ed

 by

may download and install ... JREs 30
often own ... hardware 31
some of whom are ... developers 23

is developed with ... platforms

are used by
support ... services 26
such as ... hardware 31

object-oriented programming language 9
explicit error handling 22
garbage collection 21
security model 20
architecturally independent applications 19
Java virtual machine 18

hosts

is the foundation for
the completed

helps identify
problem

s w
ith

su
ch

 as

is a

runs inside a ... w
eb brow

ser 34

run inside a ... web browser 34

members join the JCP by signing the

in
cl

ud
es

 m
em

be
rs

 fr
om

is
 u

se
d

to
 b

ui
ld

 a
pp

lic
at

io
ns

an

d
se

rv
ic

es
 b

as
ed

 o
n

m
ay becom

e platform
 packages via the ... JCP 2

may submit or comment on a ... Java Specification Request 3
who are members of the Java Community Process serve on ... expert groups 5
form ... Java developer communities 4
comment on a ... public draft 6
participate in the ... Java Community Process 2
may request revisions from the ... maintenance lead 7
who are members of the JCP elect the ... executive committee 8
often use ... development environments 16
participate in the ... development process

consist of

J2ME Tutorials

Java Series

Mobile Information
Device Profile (MIDP)
API Documents

Connected Limited
Device Configuration
(CLDC) API Documents

Connected Device
Configuration (CDC)
API Documents

J2ME API Specification

Connected Device
Configuration (CDC)
Specification

Connected Limited
Device Configuration
(CLDC) Specification

Foundation Profile
Specification

J2SE Platform
Specification

J2EE Platform
Specification

J2EE Connector
Specification

J2EE API Specification

Java Series

J2EE Tutorials

PersonalJava
Specification

Personal Basis Profile
Specification

Personal Profile
Specification

J2SE API Specification

Java Series

tutorials

Java Language
Specification (JLS)

J2SE Tutorials

J2ME Platform
Specification

Mobile Information
Device Profile (MIDP)
Specification

point-of-sale (POS)
systems, pagers, cell
phones, and personal
digital assistants (PDAs)

Java Card, subscriber
identity module (SIM)
phones, and
multi-application smart
cards

network-aware
appliances,
automobiles, and
Telematic networks

Windows
Mac OS
Unix
Linux
Irix
SolarisTM

SunOSTM

UP UX
AIX
Alpha
RS6000
FreeBSD

NeXT
HP-UX
Compaq Tru64
beOS
VMS

Solaris, Linux, Windows,
HP-UX, AIX, FreeBSD

Windows
SolarisTM

proprietary systems

Palm OS, Windows CE,
RTOS, Linux, Symbian OS,
proprietary systems

Java forums Java developer
communities

specification leads
(spec leads)

Java Community
ProcessSM(JCP)

Executive
Committee

alternate
implementations

Sun companies

Java Specification
Request (JSR)

community
draft

public
draft

new Java specification Reference Implementation
& Technology Compatibility Kit (TCK)

Program
Management Office

maintenance
lead

visual programming tools

class
structures

user interface
frameworks

bug

development environments tools

expert groups

logo

source code framework

source code

text editor

classes

text files

compiler

byte code

binary files

virtual machine

machine instructions

fragment or
application

debugger

J2EE
documentation

J2SE
documentation

J2ME
documentation

other
documentation

J2METM

J2ME
applets

J2ME
applications

MIDlets

Personal
Profile (PP)

Profiles

CDC configurations CLDC

J2ME
Wireless
Toolkit

Java virtual machine

specialized
embedded applications

PDA
applications

cell phone
applications

MIDP

Java CardTM Java TVTM Java Embedded
ServerTM(JES)

applications for use
with Smart Cards

Java Card applets

Java Card API

Java Card
virtual machine

interactive television
applications

Java TV Xlets

Java TV APIs

PersonalJavaTM

Java virtual
machine

televisions

embedded
applications

Java Embedded
Server
framework

Java virtual
machine

proprietary
systems

real-time operating
systems (RTOS)

Java Card
Development
Kit

platforms

applications

runnable components

components

packages or
libraries

Software Development
Kits (SDKs)

Java runtime environments
(JREs)

operating
systems

specific devices (hardware)

deployment
descriptor

EJB
container

Enterprise
JavaBeansTM(EJB)

servlets JavaServer
PagesTM(JSPTM)

web container
connector
architecture

business logic server components client components user interfaces

web-based
applications

J2EE platform
packages

J2EE specific
packages

Java virtual
machine

Java-enabled
web server

J2EE
application
server

Java Web Services Developer Pack

servers

J2EE Software Development Kit

web services

web browser

markup language

Extensible Markup
Language (XML)

Simple Object
Access Protocol
(SOAP)

UDDI

J2SE applications

platform packages

Java regular
expressions

J2SE Software
Development Kit

Java Plug-In Java-enabled
browser or viewer

operating system-based
Java virtual machine

J2SE optional packages

desktop applications

Java 3DTM JavaHelpTM

optional
packages

J2ME
optional
packages

J2SETM

Swing

containers

enterprise applications client/server
applications

J2EETM

applications embedded
in a web page

J2SE applets

JavaBeansTM

Beans

personal
computers

workstations

portability

Java virtual machine specification

critical resources

explicit error handling

garbage collection

security model

architecturally independent applications

Just-In-Time compilation

dynamic compilation

performance

syntax and
keywords

object-oriented programming language

benefits and advantages

reduced development time
ability to write higher-quality code
more maintainable code
ability to call non-Java functions

principles

objects

serialization

class libraries

packages

classes

methods constructorsinner classes

superclass (parent class) abstract class

APIs
subclass (child class)

fields

types

scope

commentsdeclarationsstatements

data

primitives object references

JavadocTM
comments

Javadoc
tool

interfaces

methods and fields

browsable
documentation

API spec

activities

services

software

trademark

logo

JiniTM

Provides a complete
specification for the
syntax and semantics of
the Java programming
language.

11

10 13

14

15

12

18

25

9

22

21

20

19

16 17

32 35

36

37

38

39

40 41

43

42

2

3

0

5

4

6

8

7

33

34

24 26

27

23

28

31

30

29

1

Application
programming
interface
specification.

Runtime instances of classes.

In runtime, refers to the process of
turning an object into a data stream for
purposes of transmission or storage.

Classes are source
code files that
describe a unit of
programming. A class
relates a set of data
(fields) and functions
(methods) that use
the data.

Class libraries are
organized collections
of prebuilt classes
and functions used to
create other classes.
Class libraries can be
part of the Java
standard – meaning
they have been
ratified by the Java
Community Process –
or created by
individual developers
for their own or their
company's use.

An application programming interface is the
written or understood specification of how a
piece of software interacts with the outside
world. It specifies what input the application
or application component accepts, how the
software will behave, and what output it will
provide. All computer software relies on a
variety of APIs to achieve tasks such as
writing a file or displaying text. APIs often
depend on other APIs.

Particular to Java,
interfaces are source code
files that define a set of
functions (methods) that
are required by a class.
Interfaces name methods
and set an expectation for
each method's behavior,
but do not implement the
methods. Interfaces allow
a piece of code to be
written in such a way that
the code can work with
any type of class that
supports the interface.

Abstract classes permit child
classes to inherit a defined
method or to create groups of
related classes for polymorphic
behavior.

Primitives
generally enable
basic math or
comparison
operations.

Inner classes reside inside
another class, allowing
for better organization.
Should not be confused
with subclasses.

In running
programs,
statements
prescribe actions
or a sequence of
actions.

Scope limits access to methods and properties. Levels include:

Comments specifically formatted to
be processed by the Javadoc tool.

In running
programs,
declarations define
a variable's
existence and
determine scope.

Notes that developers include to
explain source code to
themselves and others.

Methods are
detailed
instructions that
cause a running
object to take
action or
manipulate data.

Fields are
sometimes
referred to as
properties.

The virtual machine may encounter a problem, or exception, while a program is running.
The Java language requires that pieces of code which are likely to encounter a particular
error offer a mechanism for handling the exception at runtime. When an error is
encountered, the virtual machine executes the code designed to respond to the error.

Watching for data in memory that is no longer needed and freeing the memory for reuse.
Other programming languages require programmers to free memory explicitly when a
piece of data is no longer needed, which can increase the development effort.

Architecturally dependent machines that are available
for nearly every contemporary operating system.

Significantly improves virtual machine
performance by translating groups of
instructions from byte code to machine
code rather than one instruction at a
time.

Goes beyond Just-in-Time compilation by
examining the code as it runs and
focusing optimization efforts on the most
critical pieces of code as it executes.
Dynamic compilation is enacted by the
Java HotSpotTM virtual machine.

One application can run in multiple environments
without being rewritten or recompiled.

Including memory and hard drive.

Such as the object
model, inheritance,
modularity,
abstraction, hierarchy,
implementation
hiding, information
hiding, encapsulation,
and polymorphism.

Java Native Interface (JNI) provides a method for calling native
functions such as operating system or legacy library functions.

As opposed to a purely procedural
programming language.

The Java language has roots in C, Objective C,
SmallTalk, and LISP.

Class structures
are basic source
code that
provides a
framework
for the classes,
describes the
class hierarchy,
and provides the
names of the
class methods
and properties.
Does not include
implementation
details (method
definitions).

Downloads and documentation are
available at http://java.sun.com.

Selected Java products have been
localized into many languages. This
localization is one of the key factors
for adoption of Java technology
worldwide.

The combination of the class
structures and the user interface
framework into a skeleton of the
application's overall source code. Does
not include implementation details.

Basic source code that
describes the graphical
user interface.
Does not include
implementation details.

The software development process is iterative, with several
rounds of designing, writing, compiling, running, and testing
before software is deployed.

A software utility
that turns
human-readable
text files into
machine-
friendly byte
code.

Are computer-
readable.
Binary files
usually have
the suffixes
.jar, .jcm,
.class, .ear, or
.war.

Is platform
independent. It
almost never can
be read by the
processor
directly.

Is human
readable.

Are processor
dependent. They can
be read by the
processor directly.

Java developers often use specific development environments
called Integrated Development Environments, or IDEs.

Are human-readable.
Usually have the
suffixes .java or .jav.

A Reference Implementation is
a working example of the JSR.
Other companies will produce
their own implementations.
The TCK is a suite of tests,
tools, and documentation that
provides a standard way of
testing an implementation for
compliance with a Java
specification.

A proposal to develop
a new specification
or significant revision
to an existing spec.

Companies include
IBM, Motorola,
Nokia, Oracle,
Novell, Netscape,
Hewlett-Packard,
Apple, and BEA.

There are two
executive
committees:
J2EE/J2SE and J2ME.

Universal Description,
Discovery, and Integration
provides a way for businesses
to discover each other. Can
also be used programmatically
by applications to locate an
application or service.

There are several
implementations of
Mobile Information
Device Profile,
including MIDP for
Palm 1.0.3, MIDP
1.04 for Monty, and
MIDP 2.0.

Profiles are packages required
for a particular vertical
market segment or set of
related devices. Other profiles
include Foundation, Game,
Personal Basis Profile, and PDA.

A system that
enables
developers to
incorporate
online help in
applications or
web sites.

A set of classes
used to write
three-dimensional
graphics applets
or applications.

Connected Device
Configuration
includes specific
packages that are
subsets of the J2SE
equivalent:
java.lang
java.util
java.net
java.io
java.text
java.security

A set of
packages that
define basic
services for a
range of
devices.

Connected Limited
Device Configuration
includes specific
packages that are
subsets of the J2SE
equivalent:
java.io
java.lang
java.util
javax.microedition.io

The J2ME Wireless
Toolkit includes the
necessary tools,
emulators,
documentation, and
examples to develop
and simulate Java
applications targeted
at cell phones,
pagers, PDAs, and
other small devices.

A JVM can be optimized for cell phones,
PDAs, and other similarly resourced devices.

Java 2 Platform Micro Edition is intended to run on devices
with limited computing power, such as cell phones or PDAs.
J2ME has reduced processor and memory requirements. It is
based on subsets of J2SE with additional components for
market segments such as hand-held devices.

Manage
transactions,
life-cycles,
and data
persistence.

Provides a mechanism
for connecting to legacy
information systems.

Cannot function on their
own, but are used by other
components or runnable
components.

Enterprise JavaBeans
define independent pieces
of business logic or
application behavior that
can call either servlets,
JSPs, or other EJBs.

Includes the binary version of the J2EE Reference
Implementation, plus the development tools and
documentation needed to build a J2EE application.

Sometimes referred to as
required or core packages.

Servlets respond to
an URL request.
Servlets commonly
generate HTML, XML,
or dynamic images.
They can call other
servlets, JSPs, or EJBs.

On handheld and
embedded devices, the
initial implementation
of Java technology
addresses the software
needs of networked
applications running
on consumer devices
such as set-top boxes
and smart phones.

A JVM can be optimized
for set-top boxes.

Specifies packages:
http
log
device access
timers
framework

Components that can
run on their own.

Examples include:
¡avax.activation
javax.ejb
javax.servlet
javax.transaction
javax.xml

JSPs define a page
element, which can be
HTML, XML, or another
markup language. JSPs
execute as servlets.
They can call other
JSPs, servlets, or EJBs.

Some JVMs are
optimized for servers.

Provides a framework for developing and hosting J2EE applications
that run inside web containers. The pack includes the Java APIs for
XML included in the Java XML Pack, the JavaServer Pages Standard
Tag Library (JSTL), the Ant build tool, the Java WSDP Registry Server,
and the Tomcat Java Servlet and JavaServer Pages container.

Java 2 Platform Enterprise Edition is
used to build secure, scalable,
distributable server-based
applications for large enterprises.

Can be HTML,
WML, XHTML,
or voice XML.

Provides a structured and
extensible mechanism for
organizing and presenting data.
Many Java packages and classes
utilize XML to store and exchange
data.

Provides a way for applications
to communicate. SOAP is
typically transmitted via HTTP.

Discrete units of software
functionality that conform to the
JavaBeans API and are designed to
be reusable components. The
JavaBeans API makes it particularly
easy for Beans to be utilized by
visual programming tools. (In an
architecture analogy, these would
be prebuilt walls, windows, or
doors.)

A component kit that
provides a set of graphical
user interface elements.
Swing can be used to
rapidly build applications
without writing original
code to support common
interface elements.
Supports a native look and
feel on many common
operating systems.

A powerful set of text matching and
manipulation routines supported by
many programming languages.
Java technology implements
Perl-compatible regular

Some JVMs are optimized for various types
of laptops, workstations, and desktops.

Includes the necessary
tools, emulators, and
runtime environment
to develop and test
applets for the Java
Card platform.

Depend on the Java
Media Framework
(JMF), which is
optional to J2SE but
required for Java TV.

Includes specific
packages:
java.lang
javacard.framework
javacard.security
javacardx.crypto

A JVM can be
optimized
for residential
gateway servers.

Telematic networks
connect computers with
telecommunications
systems.

Some browsers may be Java-enabled
because they include the Java Plug-In.
Some users may need to download
the Java Plug-In for their browsers.
Installing the Java Plug-In will also
install the J2SE runtime environment.

Java 2 Platform Standard Edition is intended to
run on desktops, laptops, and workstations. J2SE
also includes the core language packages and
classes used by J2EE and J2ME.

Implement a main method. A class that
defines an application must declare a
main method, which the Java virtual
machine uses as the starting point for
the application. The main method gets
executed when the application starts.

Extend the applet class, which
provides developers with a basic
framework for rapid development of
a limited application. This includes a
basic user interface framework and
event model.

Also referred to as required or core
packages, platform packages are the
heart of the Java programming
language. The packages include
myriad classes that define user
interface components, a
programming event model, text and
math processing tools, code-level
security, objects for memory storage
of complex data, and methods for
invoking remote applications, to
name just a few.

Includes Web
Services, Getting
Started, Java XML,
Internationalization,
Sound, and Java 2D.Such as user-controlled camera

views and video on demand.

Java technology is especially
useful in devices that are
connected by a network.

Such as ATMs and
point-of-sale services.

Such as home services and
network-aware automobiles.

The J2SE SDK includes the source code,
class libraries, development tools, and
runtime environment required to build
Java applications and applets.

Including servers, web-based solutions, stand-alone
applications, and clients.

Including news services, instant messaging services,
e-mail services, communication software, collaboration
software, discussion forums, games, the world wide web,
productivity software, image-creation software, and
marketplace services.

Including getting information, communicating,
collaborating, playing, working, creating, and buying
and selling.

A Java specification describes
some aspect of Java technology,
including language, virtual
machines, platform editions,
profiles, and APIs.

Jini network technology provides
one infrastructure for delivering
services in a network and for
creating spontaneous interaction
between programs that use
those services.

is used to build ... web services 33

A standardized way
of integrating and
shaping business logic,
data, and processes
across a network.

A JRE is the software environment in
which programs compiled for the Java
virtual machine can run. The runtime
system comprises everything necessary to
run programs written in the Java
programming language, including the
Java virtual machine, which may be a Java
interpreter, and the platform packages.
JREs may be developed by Sun or by other
companies.

Hosts ESBs,
servlets and JSPs.

Can host ESBs,
servlets and
JSPs.

Optional packages define
a set of methods to
address specific
functionality required for
certain specialized
applications. Applications
that require optional
packages must be shipped
with the package code.

Specifies that the entire
J2SE JLS is applicable to
J2EE, includes additional
specifications for J2EE,
specifies what features
the JVM must support,
and what the platform
packages are.

Includes the JLS and
documentation
describing what the
platform packages are
and what features the
JVM must support.

Specifies which parts
of the JLS are
applicable to J2ME,
what features the JVM
must support, and
what the platform
packages are.

Java BluePrints
Guidelines, patterns,
and code for end-to-end
applications.

is available via http://java.sun.com.

The Java Specification Participation
Agreement is a one-year renewable
agreement that allows signatories to
become members of the JCP.
Alternatively, developers can sign the
more limited Individual Expert
Participation Agreement (IEPA).

Alternate implementations are written
to the same specification and pass the
TCK, but can be licensed differently
and may have enhanced features
beyond the reference implementation.

JSPA

Java™ Technology Concept Map

8 Using concept maps in product development

More Information

For more on concept mapping,
read Gowin and Novak’s Learning How to Learn.

For more on teaching concept mapping,
read Dubberly’s The Baseball Project:
A Step-by-step Approach to Introducing
Information Architecture,
available at http://www.dubberly.com/articles/
the-baseball-projects.html

Project Stats

The fi nal map contains:
 – 235 terms
 – 425 links (relationships)
 – 110 descriptions

We began the map in October 2000 and delivered
printed copies in September 2001.

The process required:
 – 49 weeks
 – more than 50 interviews
 – more than 100 meetings
 – more than 2000 emails

The team that created the map included:
 – Audrey Crane, project manager, interviewer,

researcher, mapper
 – Paul Devine, content expert, mapper
 – Hugh Dubberly, interviewer, mapper
 – Jim Faris, mapper, graphic designer
 – Paul Pangaro, our client
 – Harry Saddler, content expert, mapper, graphic designer
 – Ylva Wickberg, interaction programmer

