
2

Middle-Out Design

Abstract

In 2004, Dubberly Design Office (DDO) was contracted

by “HandScript” to design a product that enables

physicians to enter orders on a handheld device.

HandScripts’ engineers had been working for a year on

an alpha prototype and would continue development

during the design of the beta. HandScripts’ physicians

were supplying content using a tool that mimicked an

early interface for the product and enjoyed their roles

as designers. The client had a limited budget and

needed usability questions answered immediately.

As in many design projects, there was not time for a

top-down or bottom-up design process. DDO had to

work “middle-out”.

This case study describes how DDO borrowed the

software quality assurance cycle and applied it to

managing interaction design—resolving both large

conceptual questions and detailed, screen-level

questions. This “middle-out” approach used a familiar

process to achieve fast, quality work.

Keywords

Analysis, Concept Design, Design Planning, Handheld

Devices and Mobile Computing, Health Care, Health,

Interaction Design, Process Improvement, Product

Design, Usability Research, User-Centered Design /

Human-Centered Design, User Experience, User

Interface Design.

Audrey Crane

Dubberly Design Office

2501 Harrison Street, #7

San Francisco, CA 94110 USA

audcrane@dubberly.com

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright © 2005 AIGA | The
professional association for design.

3

Project/problem statement

Conventionally, physicians write orders freehand on

paper. Occasionally specific forms exist for common

orders. Our client, “HandScript”, was developing a

product that would enable physicians to enter orders

for patients (such as ordering a specific test, bed rest,

medication, etc.) using a handheld device connected

wirelessly to a database.

The content being compiled for the system had to

include (or at least allow for) every type of order a

physician might want to place—1000’s of orders were

possible. HandScript was organizing the content for all

possible orders into a hierarchy of forms, an enormous

task.

The project as HandScript presented it to Dubberly

Design Office (DDO) was to contribute design work for

their beta product that would:

1. meet the user’s needs in providing design work

that was usable for all types of physicians in spite

of the very complex nature of the application.

2. meet our client’s needs, resolving engineer’s

questions about solving design problems

immediately.

Additionally, DDO wanted to do work that was up to our

own standards: logical design based on a well-thought-

out premise of what the product is and how people

want to use it.

In addition to the product design (interaction) problem,

we faced a considerable process management

challenge—the client asked us to start in the middle.

Background

The Dubberly Design Office team consisted of:

• Greg Baker

Designer

Responsible for designing all aspects of the product:

concept, interaction, and visual.

• Audrey Crane

Design and Project Manager

Responsible for process, communication and some

documentation, and schedule.

The HandScript team consisted of two physicians, a

product manager, and two engineers (one of whom had

experience designing voice interaction products and

would eventually take on the design management role).

The project was initiated in August 2004 and ended in

February 2005. The deliverables were scoped as a

specific number of user task flow diagrams, visual

design mockups, a style guide, and usability study

reports.

Note: “HandScript” is a
pseudonym. Our client has

asked to remain anonymous.

4

Challenge

The client came to us in the middle of the project

having already invested a year in design, content

development, and engineering. The client was

understandably looking to move forward—they were

not interested in starting over or even in a lengthy

reassessment. HandScript (a self funded start-up)

wanted to move forward as quickly as possible.

Dubberly Design Office’s challenge was to work within

the context of three sets of parameters: our clients’,

our own, and the users’ (the problem presented to us

by our client).

Client Context

The vast majority of employees at HandScript were

engineers. They had been working on a prototype (an

alpha) and would not stop development on the beta

product while we resolved open design issues.

HandScript did not feel that they had time to do

extensive research and product concepting. (There was

a basic product concept in place, “Our product helps

physicians enter orders…” but nothing specific, e.g.,

“The system consists of a navigation hierarchy, forms,

etc…”)

Design work for the product had been mainly focused

on visual design—colors, font sizes, icons, etc. The

designer, content developers and engineers had only

began to consider how to organize screens and content.

DDO had to address specific user interface (UI) issues

that were holding up engineering immediately.

Engineering had to be involved in the design decisions

so that they could implement the work as it was

completed.

The physicians at HandScript entered content via a tool

that mimicked the interface of an early prototype, so

they had been forced to deal with UI issues as well as

content. They had spent a great deal of time on this

and did not want to see all their work thrown out. They

questioned how DDO might do better than they had at

resolving the UI issues.

So our contribution had to work within the context of

our client’s business:

• Immediately resolve usability issues that

engineers were “stuck” on (e.g., How do I fit all

this content on the screen? How do I deal with

orders that are complex statements?)

• Develop credibility with the physicians on staff.

• Build on the work of the one designer at

HandScript (who had recently resigned).

• Show demonstrable progress to a team who felt

frustrated by a need to show advancement

quickly.

• Work within a limited budget.

DDO Context

At Dubberly Design Office, we ideally use a “top-down”

approach for such a complex product. We interview

users, develop a product concept, and test and refine

that concept. We derive the product flow (interaction)

from the interplay of product concept and user goals,

and finally design pages, page elements (“widgets”)

and look and feel. We also play a role in documenting

and organizing the content for the pages, in this case

order forms (information architecture).

The modeling of the product concept is especially

important to us. We have consistently found that very

complex problems leave working teams in a sort of

5

muddle—each team or employee only truly understands

one small part of the problem. It is the old ‘Blind Men

and the Elephant’ analogy: One man feels the tail and

declares an elephant to be like a rope. Another feels its

side and declares an elephant to be like a wall, and so

on. What each piece of the product is, how it fits with

the other pieces, and what the sum of the part adds up

to: These concepts are often missing or lost. We’ve

found that working with our clients to create a diagram

of the concepts that are key to the product helps us

understand the product deeply and thus make logical

decisions based on a shared understanding. We’ve also

found that such models help our clients’ teams think

differently about their products, to organize and

understand their work better.

Unfortunately, we could not schedule time up front to

model the product concept. Instead DDO had to work

on the run while remaining true to our own beliefs

about good design. We wanted to:

• Create a system that was clear and well-defined.

DDO wanted the product to be consistent and to

be as simple as possible (to follow the principle of

least means).

• Create a system that was extendible. Developing

such a system would ensure that DDO’s work

would be useful to HandScript as they came across

new problems after our contract ended.

• Make suggestions based on clear guiding principles

rooted in a thoughtful and logical product concept.

User Context

In order for Dubberly Design Office to help our client be

successful, we had to find a way to contribute design

thinking that worked for various types of physician-

users in such a way that:

• Key concepts were clear (e.g., What is a form?

What is an order? Where am I?).

• Expectations were clear (e.g., What am I

supposed to do first? What does this thing do?).

• Content was discoverable and legible (given the

vast amount of content and the small size of the

screen).

6

Solution

A. Process:

Before beginning work, the DDO team discussed what

process would best meet HandScript’s needs.

Handscript had presented questions from “How can we

fit all these words on the screen?” to “How should we

navigate the information hierarchy?” to “What should

an order consist of?” It was clear that a “normal”

design process would not meet the challenges we

faced. A top-down process would require most of

HandScripts’ employees to put development on hold

until we reached the point that details about interaction

and screen function were documented. A bottom-up

approach (simply working out the details as they came

up) might be faster but ran the risk of resulting in a

disjointed product that was difficult to use.

A possible approach was to persuade the client of the

usefulness of a typical design process: Couldn’t they

see how critical it was to follow the process that we

knew was best? Couldn’t they spare just a few weeks

for research and analysis?

Instead, we tried to experiment with a new and

approach. What if, instead of wrestling them into one of

our design processes, we found a way to answer their

questions when they needed them answered?

What we needed was a kind of “middle-out” approach

that would both address details quickly and address

larger conceptual questions—so that the detailed work

sprang from a logical foundation and resulted in a

cohesive product. And the approach had to be

something that our client was comfortable with, not a

heavyweight or complicated process that would take

time to explain and get accepted.

We decided to borrow from our experience in the

quality assurance (QA) cycle of software development.

Specifically, we introduced the bug tracking process,

re-cast to address design issues or “design bugs”.

Everyone at Dubberly Design Office has experience with

software development. In particular, I have worked as

a quality assurance engineer and managed software

through QA and release. The QA cycle is a well known

iterative process used in nearly all software

development: Problems with the product are kept in a

list, or more commonly in a bug database. Bugs are

given priorities, usually P1 through P5 where P1 is the

most critical. Each priority level is explicitly defined.

Bugs are assigned to appropriate members of the

development team. Bugs are fixed, regressed (to

ensure that the bug as reported is actually fixed), and

closed on an ongoing basis. The bug list is regularly

reviewed—new bugs are added and priorities are

assessed. The bug list can be stored in anything from a

dedicated database to a simple spreadsheet. Several

companies like Elementool or Bugzero provide web-

based bug tracking tools that anyone can rent for a

relatively modest fee.

The QA cycle is a process that our clients at

HandScript were comfortable with. The bug list is a

lightweight tool that was also familiar to HandScript. A

list of “design bugs”, then, would be easy to compile

and track, and our client could immediately understand

and participate in the process of using such a list to

guide the design work.

7

With that in mind, we decided on a process that would

support the “Design Bug” tracking approach:

1. Create a Prioritized Issues List—make a list of

design bugs (or, to use a more neutral word,

issues)

2. Document “Good Design” Criteria—the criteria by

which we’d decide whether a particular issue could

be closed

3. Develop Personas and Articulate Their Goals

4. Audit One Section of the Application—to learn about

the product and contribute to the Issues List

5. Develop Libraries—make a record of how HandScript

had resolved design bugs to date

6. Resolve Issues and Document Outcome

Details about each step follow.

8

Issue List
Dubberly Design Office | HandScript Design Project

Issue Priority Definitions:
P1 - global or core issues that prevents a significant number of other issues from being resolved
P2 - prevents some other issues from being resolved, but not the bulk of issues at hand
P3 - isolated issue, must be resolved at some point, but does not prevent other work

P4 - detail, does not prevent other work
P5 - detail, resolution not required for beta

Priority Title Description Resolution Notes

1 P1 Form Navigation Decide how to navigate within the hierarchy of
forms.

Navigation slider option.
See 9/7 mockup.

From 8/19
brainstorm.

5 P1 Order Navigation Decide how to navigate to new, saved, and
placed orders.

 From 8/19
brainstorm.

2 P1 Navigation Size
Problems

Deal with long form names in navigation. Resolved with issue #1.
See 9/7 mockup.

From 9/3 meeting.

3 P2 Forms States If a user visits a form, fills it out, navigates away
and then navigates back, is the form still
populated? What if it is added to the order?

 From 8/19
brainstorm. To be
addressed at 9/15

meeting.

4 P2 Options Visibility Handle optional sections (such as timing for an
order). Note that some optional sections are
commonly used, others are used very rarely.

 See Product
Requirement
Document, page 32.

Figure 1. A sample from the issues list.

B. Solution details:

Create a Prioritized Issues List

Dubberly Design Office saw problems we wanted to

address (“design bugs”, or issues) from very early in

the project—even while reviewing the alpha product

during the project negotiation. We began keeping a list

of those issues. HandScript’s engineers and physicians

had their own pressing questions, which were not

documented. In a brainstorming session, DDO and

HandScript developed a “seed list” of issues we needed

to work on, ranging from the very specific (e.g., What

do I do about this word that won’t fit on the screen?) to

the very general (e.g., What is an order?).

After the brainstorming session we reviewed some of

HandScript’s documents (e.g., Product Requirements

Document, etc.) and found additional open issues. Each

issue was listed with an issue number, title, brief

description, and origin. The original list included 20

issues (see Figure 1).

DDO intended to use the Issues List to visibly focus our

limited time on the most important problems. We would

also use it as a tool for setting aside tangential

discussions gracefully, without the HandScript team

feeling that we were ignoring the inevitable myriad of

details (or anyone’s current pet peeve).

9

to be most effective, (again we borrowed from the

quality assurance discipline) DDO introduced issue

priorities. The issue priorities were similar to the

priorities that might be assigned to software bugs. Our

experience told us that the priorities should be defined

and documented within the Issues List (also see Figure

1).

Once we had prioritized the list, it was fairly simple to

agree on which issues DDO should work on first. We

held weekly meetings with HandScript. Each meeting’s

agenda followed roughly the same outline:

1. Distribute updated Issues List; note issues added

from previous week’s discussion.

2. Review DDO’s materials for proposed solutions to

selected issues from previous week.

3. Agree on which issues are closed, which require

further revision.

4. Decide which issues to tackle for the following

week.

The List was updated weekly and kept online so that it

could be hyperlinked to other documents. Each diagram

or mockup we produced referenced the issue number

that it addressed.

In retrospect, the Issues List was the most important

tool for the success of the project. It did several things:

• It helped DDO focus our limited time on the most

important issues.

• It helped us gracefully set aside the inevitable

new but minor tangential issues that came up.

Adding the new issues to the list and prioritizing

them assured the client that their concerns were

heard and would not be forgotten, and kept

discussions focused.

• It gave us a way to track progress for our client

and ourselves.

• It documented the date and manner in which

each issue was closed. This process gave us a

very clear way to say, “That issue was closed,

and this was the resolution. Do you want us to

re-open it?” This helped us avoid any vague

continuing messing-around with issues that we

thought were closed—what Jim Barksdale calls

playing with dead snakes. The client explicitly

determined whether to let the resolution stand

when it was questioned, or to reopen it and ask

us to spend more time (and money) on it.

In the beginning of the project, we were concerned

about jumping into the middle of a work-in-progress

without taking the time to work out a product concept

with the client. In the end, DDO found that some issues

simply couldn’t be resolved without modeling the

product concept. We reached that conclusion with the

client, from the perspective of trying to resolve a

specific issue. As a result, we never had to “sell”

modeling the product concept. The HandScript team

saw the need for themselves.

The product concept model, a simple one-page diagram

(that cannot be included in this case study for

proprietary reasons) named the parts of the system

and described relationships between them. (For

example, there are physicians, patients, forms, order

sheets, and orders. The physician chooses one patient

from a list. The physician starts an order from a blank

order sheet. Etc.) Resolution of even the few issues

listed in the example on the previous page required

that the team develop a clear, shared model of those

10

Good Design Criteria for a Successful HandScript Product

1. Efficiency. Efficiency entails...

i. Intuitive UI

ii. Speed (of application)

iii. Quick access to information

2. Meeting expectations—no surprises (consistency)

3. Keeping users from getting lost—giving them a sense of

place

4. Minimal barriers and constraints

Figure 2. The list of HandScript design criteria.

relationships. I cannot overemphasize the usefulness of

the model in clarifying both teams’ understanding of

the product, the open issues, and the priorities.

In a few cases DDO couldn’t quickly reach agreement

with the HandScript team on how an issue should be

closed. We conducted one round of usability testing and

brought those issues to the test. Conducting usability

testing gave us a chance to close some sticky

disagreements. Most of the HandScript team had never

seen a usability study—they were impressed and

excited by the lab setting, the coordination of the test

and the professionalism of the moderator. And we

garnered some (more) credibility based on the very

positive responses of the users.

In order to make the middle-out process successful, we

conducted a number of “foundation-building” activities:

Document “Good Design” Criteria

Our experience is that people use words like “good

design” without qualifying what they mean.

Theoretically our clients bring us on board because they

trust our opinion on what “good design” is, but often

we find that someone on the team has different ideas.

Working out those differences can be time consuming.

HandScript was eager to work with us; most of the

team were happy to have experts helping.

Nevertheless, initial general comments about areas that

might be improved elicited defensiveness. In particular,

the physicians had spent considerable time developing

content using a tool that looked very much like the

interface of the alpha product, and thus dealing with UI

issues. They wondered why the rest of the team felt a

design consultancy was needed.

Agreeing on and documenting “good design” in the

context of the HandScript product was critical. Few

designers haven’t had the experience of getting some

way into a project before discovering that one team

member doesn’t agree that consistency is important,

for example. Better to get these on the table at the

outset. (in fact, we did go through a miniature lesson in

why consistency was good in interaction design to get it

included in the criteria.) Issues would be closed when

good solutions were identified. Having the criteria on

paper would help focus discussions and move our work

along more quickly. It would also de-personalize any

decisions to change the UI. (It was easy for the

physicians to take any UI changes personally; after all,

they’d spent a lot of time on it. Such discussions may

take less time if they can be framed more objectively.)

After several hours of discussion with the client, we

reached agreement on a prioritized list of design

criteria (see Figure 2). While these were not DDO’s

ideal criteria or necessarily the way we’d prioritize

them, the list did encompass ideas that we’d seen were

missing in the alpha. And we understood early what

differences existed between what we felt was good

design and what HandScript felt was good design.

11

The criteria were posted in our regular meeting room

and on the project web site as a constant reminder of

our collective goals. Of course later there were

discussions about what “intuitive” means or what users’

expectations might be, but obviously we spent less

time in these conversations than we might have

without any criteria at all. And DDO’s work could be

more efficient since we knew the criteria by which the

team would be deciding whether an issue could be

closed.

Develop Personas

The development of personas was another important

step to help de-personalize decisions that changed the

UI of the product and hopefully close issues more

quickly. (Of course personas serve many other valuable

purposes as described by Alan Cooper and Robert

Reimann, [1] [2].) DDO created three personas in a

brainstorming session with HandScript—there was

neither time nor budget to do more research (see

Figure 3).

We were gratified that the predictions about the

personas came to life in usability testing—HandScripts’

ideas about types of physicians were very accurate. The

personas ranged from Jennifer, a young, tech-savvy

woman, to Mark, an older physician who hated

technology. The HandScript physicians were no longer

the only users; we stopped hearing, “I designed this

screen like this because I like it when…” in our weekly

meetings. The collective team could now talk about our

personas Jennifer, Mark, and Steve.

Mark was a particularly useful persona as we continued

to stress consistency and giving the users a sense of

where they were (and where they’d been, and where

they could go next). This was important because

HandScript was constantly tempted to resolve

questions at a screen-by-screen level in an effort to

move quickly. The personas were posted prominently in

our conference room and on the project web site along

with the “Good Design” Criteria.

Figure 3. A detail from a persona.

12

Audit One Section of the Application

While the personas and design criteria were being

hammered out, we mapped one of the 17 sections of

the alpha application (see Figure 4) in order to

understand the current state of the product.

The alpha product consisted of seventeen categories of

possible orders. Each category was comprised of a

navigation tree and the order forms. The categories

contained anywhere from 30 to 100 forms; the system

as a whole contained roughly 1500 forms. Physicians

were continuing to enter content for the product, and

engineers were continuing to “port” that content to the

alpha product. HandScript did not have the time or

budget for a complete audit, nor could we justify

mapping the entire alpha product, in spite of all we

thought DDO would learn from such an exercise.

Instead, we mapped the section of the alpha that was

most nearly complete. Our partial map turned out to be

exceedingly useful in many ways: It uncovered design

bugs to add to our Issues List. Some of the issues were

areas that we could immediately improve, thus

contributing to our credibility. The engineering team

was thrilled to see in one place what a big, complicated

thing they had built. DDO became deeply familiar with

the product. Finally, the map helped DDO begin to talk

with HandScript about the bigger picture—the overall

product concept as opposed to the screen-level or even

pixel-level issues that they were caught up in.

Figure 4. A map of one seventeenth of the alpha product.

13

Develop Libraries

DDO used the map to begin developing two libraries:

a library of page types and a library of “widgets”,

functional objects, used within the pages (see Figure

5). Starting these libraries from the map of the alpha

product reinforced with HandScript that we were

building on the work they had already done.

DDO used the libraries to understand how HandScript

had been solving page-level and widget-level design

issues to date. Any concerns we had about HandScripts’

resolutions were added to the Issues List.

As the design work proceeded, we updated the libraries

with any issue resolutions that were relevant to page

types or widgets.

The libraries served as a toolkit that could be used as

needed to resolve problems with the least number of

tools necessary (following the principle of least means,

avoiding unnecessary complexity). The rigorousness of

the libraries prevented HandScript from acting on the

temptation to build unique solutions on a screen-by-

screen basis. Finally, DDO updated the libraries as

decisions were made, so we had a document that was

essentially a continually evolving final deliverable.

Figure 5. A sample from the baseline Widget Library.

14

C. Results (measured against goals)

In the end, the project budget ran out before all of the

issues were resolved. Out of 72 issues, the Dubberly

Design Office/HandScript team resolved 48. Another 15

issues were labeled low priority (P5, see Figure 1 for a

definition), and did not need to be resolved in advance

of the beta.

The HandScript team was left with about 10 open

issues to resolve, and none of those were critical (no

P1s or P2s).

Both DDO and HandScript felt that the project left

HandScript in a good position to complete the

remaining work on their own.

• We’d resolved all major issues that were

holding up development.

• We had developed a set of core documents,

including the design principles, personas,

product concept, page and widget libraries that

would inform later decisions.

• The libraries comprised a modular toolkit that

could be used to solve any number of usability

problems, and the rules for extending the

toolkit (the principals of consistency and least

means) were well established for the team.

• The team had developed a disciplined,

methodical approach for tracking and resolving

remaining and new usability questions and

issues.

HandScript continues to use the documents and

process we created to finish the user interface for the

beta. We are sometimes frustrated when we can’t see a

design through to product completion. In some ways,

though, what we did for HandScript is more satisfying

than completing the design ourselves: we accomplished

a knowledge transfer that enabled the clients to resolve

their own issues (taught them to fish, as it were…).

Before our engagement began, HandScript struggled

with a tangled nest of tough UI issues, and yet some

members of the team were skeptical that interaction

design was even necessary. After we left, HandScript

had a firm foundation for both process and design, with

an orderly queue of issues and the tools for tackling

them. And we had a good time working on the project.

On future projects, we will consider the medium of the

Issues List carefully. The list for this project was

maintained by the project manager in a spreadsheet,

and then published as HTML to the project web site.

This had the disadvantage of being time-consuming to

update and post weekly. On the other hand, it had the

advantage of keeping the list in one person’s hand,

ensuring that issues weren’t duplicated and that they

were documented clearly and briefly. In some cases, it

may make more sense to use a web-based bug tracking

tool so that all team members can enter issues, run

reports of issues assigned to them, and close them

when they’re resolved. This would be useful if the team

included more members capable of resolving issues, if

the issues themselves were more diverse (some

product management issues, some UI issues, some

technical issues, etc.) or if the team was more

geographically diverse.

15

In the final analysis, nearly all of the projects we work

on are “Middle-out” design problems—it is

unfortunately very rare to have an opportunity to start

design during the product concepting stage. Our project

with HandScript was so clearly starting in the middle of

the software development process that we had the

perspective to tackle it in a unique way. It never

occurred to us to try to wrestle a “perfect” process into

an imperfect situation. We will continue to explore and

develop the middle-out design process and its tools,

“good design” criteria, design bugs, and the issues list.

A note on the origins of middle-out design:

Middle-out design is not an entirely new idea. Good

project managers always track issues. And as

mentioned above, software QA is built around the

software bug tracking process. In addition, a number of

software developers have studied the development

process to understand and improve the process of

identifying issues, making decisions, and tracking them

(an area of research known as design rationale). [3]

The middle-out design process proposed here differs

from these other methods. It's more than just tracking

issues; it involves the whole team (including engineers)

in discussions, decisions, and tracking. It's quite similar

to software QA but tracks both design bugs and also

issues for which no design solutions have yet been

proposed. And finally it differs from most design

rationale efforts in that it is a light-weight process,

based on widely understood practices (from QA),

and relies on readily available software tools. [4] [5]

Nevertheless, middle-out design shares an important

trait with design rationale projects. Middle-out design

assumes the design process is essentially political and

argumentative—the building of an argument

(and agreement) about goals and means. In this regard

it has roots (as do most design rationale efforts) in the

work of Horst Rittel. [6] [7].

References

[1] Cooper, Alan and Reimann, Robert. About Face

2.0: The Essentials of Interaction Design.
Indianapolis: Wiley Publishing Inc., 2003.

[2] Cooper, Alan. The Inmates are Running the

Asylum: Why High Tech Products Drive Us Crazy

and How to Restore the Sanity. 2nd ed.
Indianapolis: Sams Publishing, 2004.

[3] MacLean, A., Young, R. M., and Moran, T. P. Design

Rationale: The Argument Behind the Artifact,

CHI'89 Proceedings, (Austin, Texas, May 1989),

ACM, 247-252.

[4] Shum, S. “A Cognitive Analysis of Design Rationale

Representation, (Chapter 1- Design Rationale's

Research Roots).” Doctoral Dissertation,

Department of Psychology, University of York,
1991.

[5] Regli, W. C., Hu, X., Atwood, M., and Sun, W. A

Survey of Design Rationale System: Approaches,

Representation, Capture and Retrieval,

Engineering with Computers (2000) 16: 209-235,
Springer-Verlag, London, 2000.

[6] Rittel, H. W. J., and Webber, M. M. “Dilemmas in a

General Theory of Planning.” Policy Sciences, 4
(1973), 155-169.

[7] Rittel, H. W. J. “Issues as Elements of Information

Systems, Working Paper No. 131.” Berkeley, CA:

Institute of Urban and Regional Development,
University of California, 1970.

16

Acknowledgements

Greg Baker’s extraordinarily clear thinking and

imaginative problem solving provided some of the best

interaction design work we’ve done to date.

The rest of the staff at Dubberly Design Office, Robin

Bahr, Hugh Dubberly, Ryan Reposar, and Paul Souza,

patiently helped us out whenever they were needed,

whether it was concept development, design decisions,

production, or reviewing this paper.

Our clients at HandScript gave us an invaluable

opportunity to work on a fascinating problem in a

challenging environment. They are extremely dedicated

to their work, and were open to new solutions to

difficult problems.

Richard Anderson’s contributions during usability

testing were graceful, articulate, and enormously

helpful.

